时变介质的光学[1-3]具有悠久的历史,其开创性研究可以追溯到1950年代至1970年代[4,5]。材料工程和纳米制造的最新进展已恢复了对这一领域的兴趣,从而在实验者的范围内实现了时间调节的光子结构[6,7]。随着时间的推移调节材料参数可解锁一组有趣的功能[8]。由于模量破坏了时间翻译对称性,因此能量在总体上不能保守[4]。它可以对辐射[9,10],频率转换甚至固定电荷的辐射[11]实现强大而选择性的扩增[11]。热量,即使在没有静态磁场的情况下,介质的时间调节也可以在光学频率下打破时间转换对称性t,从而铺平了朝着强烈非偏置光学结构铺平的方法[12,13]。这些可能性刺激了很多工作,如最近的评论[1-3]。时变介质的物理学与光子晶体的相关区域表现出与工程空间周期性的人工结构相关区域。类似于光子晶体的新兴特性源自其空间结构,时间调节培养基的物理学植根于材料种子的特定形式(图。1)。因此,定期调制的疗法通常称为光子时间晶体(PTC)。请注意,由于外部刺激,这些结构会在时间上破裂翻译对称性,这将它们与时间晶体的适当[14,15]区分开来,其中t破坏了t-破坏性。尽管PTC经常打破T对称性和互惠性,但可用的非偏置响应的多样性仍然在很大程度上没有探索。轴轴电动力学[16],这一直是基本兴趣的重点
主要关键词